Chemical and biological components of atmospheric particulate matter and their impacts on human health and crops: a review
This article provides a brief review of morphological features (MFs), chemical and biological aspects of particulate matters (PMs) and their effects on humans and crops. Based on previous studies, it has been found that particles such as carbonaceous, metal-rich, crust-element, fly-ash and biological particles usually exhibit multifarious morphology, due to diverse sources. Thirty-seven elements have been identified; some of them, viz. arsenic, chromium, cadmium, lead, nickel, vanadium and titanium, are extremely hazardous for humans and plants compared to other elements. These toxic elements (TEs)/toxic metals (TMs) can pose several potential diseases such as respiratory, asthma, cardiovascular, neurological and reproductive diseases on humans and also damage the food security by the causing of direct/indirect injuries, such as chlorosis/necrosis, damages cell/tissue/stomata and stunting on crops. Airborne microbes (AMs), especially fungi, are vital components of atmospheric PMs; diverse species of aeromycoflora belonging to the genus Cladosporium, Conidia, Penicillium, Alternaria, Fusarium, Aspergillus and Puccinia have been found associated with atmospheric PMs in which mostly act as pathogens and can give rise to numerous categories of diseases in humans such as skin allergy, pulmonary, respiratory, aspergillosis, pneumonia and asthma as well as on crops (wheat, rice and maize) like rust, blast and spot. This valuable information about morphological, chemical and biological (fungi) features of atmospheric PMs, their sources and deleterious consequences on humans and crops will also be cooperative for future research to assess the toxic impacts of PMs on both humans as well as crops.
Graphical abstract
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others
Characterization and health risk assessment of size-segregated fungal bioaerosols in and around a sugar mill in India
Article 19 March 2024
Chemical characterization and health risk assessment of soil and airborne particulates metals and metalloids in populated semiarid region, Agra, India
Article 13 April 2016
Evaluation of the effects of dust pollution on specific plant species near and around the marble mining site in Rajasthan, India
Article 29 April 2024
Explore related subjects
Data availability
All data related to this publication are made available in the article.
References
- Aboukhaddour, R., Fetch, T., McCallum, B. D., Harding, M. W., Beres, B. L., & Graf, R. J. (2020). Wheat diseases on the prairies: A Canadian story. Plant Pathology,69(3), 418–432. https://doi.org/10.1111/ppa.13147ArticleGoogle Scholar
- Abuley, I. K., & Nielsen, B. J. (2019). Integrating cultivar resistance into the TOMCAST model to control early blight of potato, caused by Alternaria solani. Crop Protection,117, 69–76. https://doi.org/10.1016/j.cropro.2018.11.007ArticleGoogle Scholar
- Adhikari, A., Sen, M. M., Gupta-Bhattacharya, S., & Chanda, S. (2004). Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: A 2-year study at five outdoor sampling stations. Science of the Total Environment,326, 123–141. https://doi.org/10.1016/j.scitotenv.2003.12.007ArticleCASGoogle Scholar
- Adikaram, N. K. B., & Yakandawala, D. M. D. (2020). A checklist of plant pathogenic fungi and Oomycota in Sri Lanka. Ceylon Journal of Science,49(1), 93–123. https://doi.org/10.4038/cjs.v49i1.7709ArticleGoogle Scholar
- Agrawal, A., Upadhyay, V. K., & Sachdeva, K. (2011). Study of aerosol behavior on the basis of morphological characteristics during festival events in India. Atmospheric Environment,45, 3640–3644. https://doi.org/10.1016/j.atmosenv.2011.04.006ArticleCASGoogle Scholar
- Ahmadpour, A., Castell-Miller, C., Javan-Nikkhah, M., Naghavi, M. R., Dehkaei, F. P., Leng, Y., Puri, K. D., & Zhong, S. (2018). Population structure, genetic diversity, and sexual state of the rice brown spot pathogen Bipolaris oryzae from three Asian countries. Plant Pathology,67(1), 181–192. https://doi.org/10.1111/ppa.12714ArticleCASGoogle Scholar
- Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., & Jiang, J. (2019). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135637ArticleGoogle Scholar
- Alghamdi, M. A., Shamy, M., Redal, M. A., Khoder, M., Awad, A. H., & Elserougy, S. (2014). Microorganisms associated particulate matter: A preliminary study. Science of the Total Environment,479, 109–116. https://doi.org/10.1016/j.scitotenv.2014.02.006ArticleCASGoogle Scholar
- Ali, N., Adil, I., Magsi, A., et al. (2020). Particle size, morphology and characterization of indoor and outdoor airborne particulate matter for toxic metals in Karachi. International Journal of Environmental Science and Technology,17, 3969–3982. https://doi.org/10.1007/s13762-020-02771-4ArticleCASGoogle Scholar
- Anwar, M. N., Shabbir, M., Tahir, E., Iftikhar, M., Saif, H., Tahir, A., & Nizami, A. S. (2021). Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. Journal of Hazardous Materials,416, 125851. ArticleCASGoogle Scholar
- Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., Sabino, R., Viegas, C., Meyer, W., & Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International Journal of Environmental Research and Public Health,14(6), 636. https://doi.org/10.3390/ijerph14060636ArticleCASGoogle Scholar
- Balgude, Y. S., Kshirsagar, C. R., & Gaikwad, A. P. (2019). Evaluation on the efficacy of modern fungicides against blast and sheath rot of rice. International Journal of Current Microbiology and Applied Sciences,8(3), 83–88. https://doi.org/10.20546/ijcmas.2019.803.0ArticleCASGoogle Scholar
- Bapna, M., Raman, R. S., Ramachandran, S., & Rajesh, T. A. (2013). Airborne black carbon concentrations over an urban region in western India—temporal variability, effects of meteorology, and source regions. Environmental Science and Pollution Research,20(3), 1617–1631. https://doi.org/10.1007/s11356-012-1053-3ArticleCASGoogle Scholar
- Barupal, T., & Sharma, K. (2017). Effect of leaf extracts of Lawsonia Inermis Linn. on Curvularia Lunata, caused leaf spot disease of maize. International Journal of Innovative Research and Advanced Studies,4(2), 64–67. Google Scholar
- Barupal, T., Meena, M., & Sharma, K. (2020). A study on preventive effects of Lawsonia inermis L. bioformulations against leaf spot disease of maize. Biocatalysis and Agricultural Biotechnology,23, 101473. https://doi.org/10.1016/j.bcab.2019.101473ArticleGoogle Scholar
- Bender, J., & Weigel, H.-J. (2011). Changes in atmospheric chemistry and crop health: A review. Agronomy for Sustainable Development,31(1), 81–89. https://doi.org/10.1051/agro/2010013ArticleCASGoogle Scholar
- Bernardi, A. O., Garcia, M. V., & Copetti, M. V. (2019). Food industry spoilage fungi control through facility sanitization. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2019.07.006ArticleGoogle Scholar
- Bhandarkar, S. (2013). Vehicular pollution, their effect on human heatlh and mitigation measures. Vehicle Engineering (VE),1, 2. Google Scholar
- Bharti, S. K., Kumar, D., Anand, S., Barman, S. C., & Kumar, N. (2017a). Temporal variation and trace metal characterisation of particulate matter in ambient air of rural and urban areas of lucknow, India. Climate Change and Environmental Sustainability,5(1), 75–82. https://doi.org/10.5958/2320-642X,2017.00008.4ArticleGoogle Scholar
- Bharti, S. K., Kumar, D., Anand, S., Barman, S. C., & Kumar, N. (2017b). Characterization and morphological analysis of individual aerosol of PM10 in urban area of Lucknow, India. Micron,103, 90–98. https://doi.org/10.1016/j.micron.2017.09.004ArticleCASGoogle Scholar
- Bharti, S. K., Trivedi, A., & Kumar, N. (2017c). Air pollution tolerance index of plants growing near an industrial site. Urban Climate,24, 820–829. https://doi.org/10.1016/j.uclim.2017.10.007ArticleGoogle Scholar
- Boddy, L. (2016). Pathogens of autotrophs. The Fungi. https://doi.org/10.1016/B978-0-12-382034-1.00008-6ArticleGoogle Scholar
- Bora, J., Deka, P., Bhuyan, P., et al. (2021). Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: Application of SEM–EDX, XRD, and FTIR techniques. SN Applied Sciences,3, 137. https://doi.org/10.1007/s42452-020-04117-8ArticleCASGoogle Scholar
- Brown, G. D., Denning, D. W., Gow, N. A. R., et al. (2012). Hidden killers: Human fungal infections. Science Translational Medicine,4, 165. ArticleGoogle Scholar
- Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Science of the Total Environment,653, 1458–1512. https://doi.org/10.1016/j.scitotenv.2018.10.312ArticleCASGoogle Scholar
- Butwin, M. K., von Löwis, S., Pfeffer, M. A., & Thorsteinsson, T. (2019). The effects of volcanic eruptions on the frequency of particulate matter suspension events in Iceland. Journal of Aerosol Science,128, 99–113. https://doi.org/10.1016/j.jaerosci.2018.12.004ArticleCASGoogle Scholar
- Cangemi, M., Speziale, S., Madonia, P., D’Alessandro, W., Andronico, D., Bellomo, S., Brusca, L., & Kyriakopoulos, K. (2017). Potentially harmful elements released by volcanic ashes: Examples from the Mediterranean area. Journal of Volcanology and Geothermal Research,337, 16–28. https://doi.org/10.1016/j.jvolgeores.2017.03.015ArticleCASGoogle Scholar
- Chakrabarti, H. S., Das, S., & Gupta-Bhattacharya, S. (2012). Outdoor airborne fungal spora load in a suburb of Kolkata, India: Its variation, meteorological determinants and health impact. International Journal of Environmental Health Research,22, 37–50. https://doi.org/10.1080/09603123.2011.588323ArticleCASGoogle Scholar
- Chaurasia, S., Karwariya, A., & Gupta, A. D. (2013). Effect of cement industry pollution on chlorophyll content of some crops at Kodinar, Gujarat, India. Proceedings of the International Academy of Ecology and Environmental Sciences,3(4), 288–295. CASGoogle Scholar
- Chen, T.-M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor air pollution: Nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. The American Journal of the Medical Sciences,333(4), 249–256. https://doi.org/10.1097/maj.0b013e31803b900fArticleGoogle Scholar
- Chmiel, M., Kral, I., & Lenart-Boroń, A. (2019). Concentration and size distribution of microbial aerosol in the historical objects in Kraków as a potential health risk and biodeterioration factor. Aerobiologia,35, 743–758. https://doi.org/10.1007/s10453-019-09614-xArticleGoogle Scholar
- Cong, Z., Kang, S., Dong, S., Liu, X., & Qin, D. (2010). Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environmental Monitoring and Assessment,160, 323–335. https://doi.org/10.1007/s10661-008-0698-3ArticleCASGoogle Scholar
- Cooper, R., & Harrison, A. (2009). The exposure to and health effects of antimony. Indian Journal of Occupational and Environmental Medicine,13(1), 3. https://doi.org/10.4103/0019-5278.50716ArticleGoogle Scholar
- CPCB (Central Pollution Control Board). (2009). National Ambient Air Quality Standards. Central Pollution Control Board Notification 2009. http://cpcb.nic.in/air-quality-standard/.
- Crandall, S. G., Saarman, N., & Gilbert, G. S. (2020). Fungal spore diversity, community structure, and traits across a vegetation mosaic. Fungal Ecology,45, 100920. https://doi.org/10.1016/j.funeco.2020.100920ArticleGoogle Scholar
- Crisponi, G., Fanni, D., Gerosa, C., Nemolato, S., Nurchi, V. M., Crespo-Alonso, M., Lachowicz, J. I., & Faa, G. (2013). The meaning of aluminium exposure on human health and aluminium-related diseases. BioMolecular Concepts. https://doi.org/10.1515/bmc-2012-0045ArticleGoogle Scholar
- Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., & Wan, X. (2015). Trace element composition of PM2.5 and PM10 from Kolkata–a heavily polluted Indian metropolis. Atmospheric Pollution Research,6, 742–750. https://doi.org/10.5094/APR.2015.083ArticleCASGoogle Scholar
- Das, S., Pal, D., & Sarkar, A. (2021). Particulate matter pollution and global agricultural productivity. Sustainable Agriculture Reviews 50 Emerging Contaminants in Agriculture,8, 79–107. ArticleGoogle Scholar
- de la Riva, A., García-Carneros, A. B., & Molinero-Ruiz, L. (2019). First report of stalk rot of maize caused by Stenocarpella maydis in Spain. Plant Disease,103(7), 1789–1789. https://doi.org/10.1094/PDIS-02-19-0278-PDNArticleGoogle Scholar
- Devoy, J., Remy, A. M., Rocca, B. L., Wild, P., & Rousset, D. (2018). Occupational exposure to beryllium in French industries. Journal of Occupational and Environmental Hygiene. https://doi.org/10.1080/15459624.2018.1559926ArticleGoogle Scholar
- Dey, A., Mishra, T., Sahu, S., & Saha, A. (2021). Evaluation of impact of ambient air pollution on respiratory health of traffic police in Kolkata. BLDE University Journal of Health Sciences,6(1), 35. ArticleGoogle Scholar
- do Nascimento, J. P. M., López, A. M. Q., & Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology and Applied Sciences,8(1), 2749–2772. https://doi.org/10.20546/ijcmas.2019.801.291ArticleCASGoogle Scholar
- Dorizas, P. V., Kapsanaki-Gotsi, E., Assimakopoulos, M. N., & Santamouris, M. (2013). Correlation of particulate matter with airborne fungi in schools in Greece. International Journal of Ventilation,12(1), 1–16. https://doi.org/10.1080/14733315.2013.11683998ArticleGoogle Scholar
- Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae,234, 431–444. https://doi.org/10.1016/j.scienta.2017.12.039ArticleCASGoogle Scholar
- Enyiukwu, D. N., Ononuju, C. C., & Maranzu, J. O. (2018). Mycotoxins in foods and indoor air: Their attendant diseases and modes of injury on biological and human systems. Greener Journal of Epidemiology and Public Health,6(1), 034–051. ArticleGoogle Scholar
- Esworthy, R. (2013). Air quality: EPA's 2013 changes to the particulate matter (PM) standard. Library of Congress, Congressional Research Service.
- Fennelly, M. J., Sewell, G., Prentice, M. B., O’Connor, D. J., & Sodeau, J. R. (2018). The use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmosphere,9(1), 1. https://doi.org/10.3390/atmos9010001ArticleCASGoogle Scholar
- Fick, S. E., Barger, N., Tatarko, J., & Duniway, M. C. (2020). Induced biological soil crust controls on wind erodibility and dust (PM10) emissions. Earth Surface Processes and Landforms,45(1), 224–236. ArticleGoogle Scholar
- Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., et al. (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research,182, 346–376. https://doi.org/10.1016/j.atmosres.2016.07.018ArticleCASGoogle Scholar
- Frohlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R., & Poschl, U. (2009). High diversity of fungi in air particulate matter. Proceedings of the National Academy of Sciences,106, 12814–12819. https://doi.org/10.1073/pnas.0811003106ArticleGoogle Scholar
- Furger, M., Rai, P., Slowik, J. G., Cao, J., Visser, S., Baltensperger, U., & Prévôt, A. S. (2020). Automated alternating sampling of PM10 and PM2.5 with an online XRF spectrometer. Atmospheric Environment,5, 100065. https://doi.org/10.1016/j.aeaoa.2020.100065ArticleCASGoogle Scholar
- Gao, M., Jia, R., Qiu, T., Han, M., Song, Y., & Wang, X. (2015). Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmospheric Environment,118, 203–210. https://doi.org/10.1016/j.atmosenv.2015.08.004ArticleCASGoogle Scholar
- Garaga, R., Avinash, C. K. R., & Kota, S. H. (2019). Seasonal variation of airborne allergenic fungal spores in ambient PM10—a study in Guwahati, the largest city of north-east India. Air Quality, Atmosphere and Health,12, 11–20. https://doi.org/10.1007/s11869-018-0624-yArticleCASGoogle Scholar
- García-Cuellar, C. M., Chirino, Y. I., Morales-Bárcenas, R., Soto-Reyes, E., Quintana-Belmares, R., Santibáñez-Andrade, M., & Sánchez-Pérez, Y. (2020). Airborne particulate matter (PM10) inhibits apoptosis through PI3K/AKT/FoxO3a pathway in lung epithelial cells: The role of a second oxidant stimulus. International Journal of Molecular Sciences,21(2), 473. https://doi.org/10.3390/ijms21020473ArticleCASGoogle Scholar
- Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters,9, 303–321. https://doi.org/10.1007/s10311-011-0313-7ArticleCASGoogle Scholar
- Garnier, L., Valence, F., & Mounier, J. (2017). Diversity and control of spoilage fungi in dairy products: An update. Microorganisms,25, 42. https://doi.org/10.3390/microorganisms5030042ArticleCASGoogle Scholar
- Ghosh, T. A. N. M. A. Y., Biswas, M. K., Guin, C. H. I. R. A. N. J. I. B., Roy, P. R. A. D. I. P. T. A., & Aikat, K. A. U. S. T. A. V. (2018). A review on seed borne mycoflora associated with different cereal crop seeds and their management. Plant Cell Biotechnology and Molecular Biology,19, 107–117. Google Scholar
- Global Asthma Report (GAR) (2018). http://www.globalasthmareport.org/.
- Gonzalez, L. T., Rodríguez, F. E. L., Sánchez-Domínguez, M., Leyva-Porras, C., Silva-Vidaurri, L. G., Acuna-Askar, K., Kharisov, B. I., Villarreal Chiu, J. F., & Alfaro Barbosa, J. M. (2016). Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmospheric Environment,143, 249–260. https://doi.org/10.1016/j.atmosenv.2016.08.053ArticleCASGoogle Scholar
- Gonzalez-Delgado, A., Shukla, M. K., DuBois, D. W., Flores-Márgez, J. P., Escamilla, J. A. H., & Olivas, E. (2017). Microbial and size characterization of airborne particulate matter collected on sticky tapes along US–Mexico border. 2016. Journal of Environmental Sciences,53, 207–216. https://doi.org/10.1016/j.jes.2015.10.037ArticleGoogle Scholar
- Górny, R. L. (2020). Microbial aerosols: Sources, properties, health effects, exposure assessment—A review. KONA Powder and Particle Journal. https://doi.org/10.14356/kona.2020005ArticleGoogle Scholar
- Grinn-Gofroń, A., Nowosad, J., Bosiacka, B., Camacho, I., Pashley, C., Belmonte, J., et al. (2019). Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Science of the Total Environment,653, 938–946. https://doi.org/10.1016/j.scitotenv.2018.10.419ArticleCASGoogle Scholar
- Gummeneni, S., Yusup, Y. B., Chavali, M., & Samadi, S. Z. (2011). Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmospheric Research,101, 752–764. https://doi.org/10.1016/j.atmosres.2011.05.002ArticleCASGoogle Scholar
- Guo, Z., Wang, Z., Zhao, Z., Zhang, C., Fu, Y., Li, J., Zhang, C., Lu, B., & Qian, J. (2018). Biological and chemical compositions of atmospheric particulate matter during hazardous haze days in Beijing. Environmental Science and Pollution Research,25(34), 34540–34549. https://doi.org/10.1007/s11356-018-3355-6ArticleCASGoogle Scholar
- Gupt, S. K., Basnet, R., Pant, K. J., Wagle, P., & Bhatta, M. (2020). Efficacy of chemical and organic fungicides against spot blotch management of wheat. Journal of Plant Sciences and Crop Protection,2(2), 202. Google Scholar
- Gupta, A. K., Batra, R., Bluhm, R., et al. (2004). Skin diseases associated with Malassezia species. Journal of the American Academy of Dermatology,51(5), 785–798. ArticleGoogle Scholar
- Gupta, V. (2019). Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. Environmental Concerns and Sustainable Development. https://doi.org/10.1007/978-981-13-5889-0_5ArticleGoogle Scholar
- Haas, D., Galler, H., Luxner, J., Zarfel, G., Buzina, W., Friedl, H., Friedl, E., Habib, J., & Reinthaler, F. F. (2013). The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmospheric Environment.,65, 215–222. https://doi.org/10.1016/j.atmosenv.2012.10.031ArticleCASGoogle Scholar
- Haas, D., Lesch, S., Buzina, W., Galler, H., Gutschi, A. M., Habib, J., Pfeifer, B., Luxner, J., & Reinthaler, F. F. (2016). Culturable fungi in potting soils and compost. Sabouraudia,54(8), 825–834. https://doi.org/10.1093/mmy/myw047ArticleGoogle Scholar
- Han, Y., Yang, T., Xu, G., Li, L., & Liu, J. (2020). Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. Journal of Hazardous Materials,391, 122256. https://doi.org/10.1016/j.jhazmat.2020.122256ArticleCASGoogle Scholar
- Hao, C., Chen, B., de la Campa, A. M. S., & Jesus, D. (2020a). Increased industry contribution and atmospheric heavy metals from economic recovery in Spain. Journal of Cleaner Production,246, 119024. https://doi.org/10.1016/j.jclepro.2019.119024ArticleCASGoogle Scholar
- Hao, Y., Luo, B., Simayi, M., Zhang, W., Jiang, Y., He, J., & Xie, S. (2020). Spatiotemporal patterns of PM2.5 elemental composition over China and associated health risks. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020b.114910ArticleGoogle Scholar
- Harada, K., Saito, M., Sugita, T., & Tsuboi, R. (2015). Malasseziaspecies and their associated skin diseases. The Journal of Dermatology,42(3), 250–257. https://doi.org/10.1111/1346-8138.12700ArticleGoogle Scholar
- Haschek, W. M., & Voss, K. A. (2013). Mycotoxins. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. https://doi.org/10.1016/b978-0-12-415759-0.00039-xArticleGoogle Scholar
- Honda, A., Sawahara, T., Hayashi, T., Tsuji, K., Fukushima, W., Oishi, M., et al. (2017). Biological factor related to Asian sand dust particles contributes to the exacerbation of asthma. Journal of Applied Toxicology,37(5), 583–590. ArticleCASGoogle Scholar
- Hu, Y., Hu, Y., Zhang, J., Li, X., et al. (2013). Penicillium marneffei infection: An emerging disease in mainland China. Mycopathologia,175, 57–67. https://doi.org/10.1007/s11046-012-9577-0ArticleGoogle Scholar
- Hu, Z., Richter, H., Sparovek, G., & Schnug, E. (2004). Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. Journal of Plant Nutrition,27(1), 183–220. https://doi.org/10.1081/pln-120027555ArticleCASGoogle Scholar
- Humbal, C., Gautam S., Joshi S. K., & Rajput M. S. (2020). Spatial Variation of airborne allergenic fungal spores in the ambient PM2.5—A study in Rajkot City, Western Part of India. In Measurement, analysis and remediation of environmental pollutants (pp. 199–209). https://doi.org/10.1007/978-981-15-0540-9_10.
- Hyde, P., & Mahalov, A. (2020). Contribution of bioaerosols to airborne particulate matter. Journal of the Air & Waste Management Association,70(1), 71–77. https://doi.org/10.1080/10962247.2019.1629360ArticleCASGoogle Scholar
- Igbokwe, I. O., Igwenagu, E., & Igbokwe, N. A. (2019). Aluminium toxicosis: A review of toxic actions and effects. Interdisciplinary Toxicology,12(2), 45–70. https://doi.org/10.2478/intox-2019-0007ArticleCASGoogle Scholar
- Islam, N., Dihingia, A., Khare, P., & Saikia, B. K. (2020). Atmospheric particulate matters in an Indian urban area: Health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. Journal of Hazardous Materials,384, 121472. https://doi.org/10.1016/j.jhazmat.2019.121472ArticleCASGoogle Scholar
- Ismaiel, A. A., & Papenbrock, J. (2015). Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture,5, 492–537. https://doi.org/10.3390/agriculture5030492ArticleGoogle Scholar
- Jain, P. K., Gupta, V. K., Misra, A. K., Gaur, R., Bajpai, V., & Issar, S. (2011). Current status of Fusarium infection in human and animal. Asian Journal of Animal and Veterinary Advances,6(3), 201–227. https://doi.org/10.3923/ajava.2011.201.227ArticleGoogle Scholar
- Jain, S., Sharma, S. K., Mandal, T. K., & Saxena, M. (2017). Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology,37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009ArticleCASGoogle Scholar
- Jaiswal, N. K., Ramteke, S., Patel, K. S., Saathoff, H., Nava, S., Lucarelli, F., Yubero, E., & Viana, M. (2019). Winter particulate pollution over Raipur, India. Journal of Hazardous, Toxic, and Radioactive Waste,23(4), 05019001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000444ArticleCASGoogle Scholar
- Jia, J., Cheng, S., Yao, S., Xu, T., Zhang, T., Ma, Y., Wang, H., & Duan, W. (2018). Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry. Atmospheric Environment,182, 115–127. https://doi.org/10.1016/j.atmosenv.2018.03.051ArticleCASGoogle Scholar
- Juliana, P., Singh, R. P., Singh, P. K., Crossa, J., Huerta-Espino, J., Lan, C., et al. (2017). Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theoretical and Applied Genetics,130(7), 1415–1430. https://doi.org/10.1007/s00122-017-2897-1ArticleGoogle Scholar
- Júnior, J. N. D. A., & Hennequin, C. (2016). Invasive trichosporon infection: A systematic review on a re-emerging fungal pathogen. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.01629ArticleGoogle Scholar
- Kalisa, E., Archer, S., Nagato, E., Bizuru, E., Lee, K., Tang, N., Pointing, S., Hayakawa, K., & Lacap-Bugler, D. (2019). Chemical and biological components of urban aerosols in Africa: Current status and knowledge gaps. International Journal of Environmental Research and Public Health,16(6), 941. https://doi.org/10.3390/ijerph16060941ArticleCASGoogle Scholar
- Kang, J., Choi, M.-S., Yi, H.-I., Jeong, K.-K., Chae, J.-S., & Cheong, C.-S. (2013). Elemental composition of different air masses over Jeju Island, South Korea. Atmospheric Research,122, 150–164. https://doi.org/10.1016/j.atmosres.2012.10.031ArticleCASGoogle Scholar
- Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment,120, 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087ArticleCASGoogle Scholar
- Keith, S., Wohlers, D., & Ingerman, L. (2019). Toxicological profile for thorium.
- Keramydas, D., Bakakos, P., Alchanatis, M., Konstantakopoulos, I., et al. (2020). Investigation of the health effects of workers exposed to respirable crystalline silica during outdoor and underground construction projects in Greece. Preprints. https://doi.org/10.20944/preprints202003.0104.v1ArticleGoogle Scholar
- Khandelwal, N., Tiwari, R., Saini, R., & Taneja, A. (2019). Particulate and trace metal emission from mosquito coil and cigarette burning in environmental chamber. SN Applied Sciences.,1, 441. https://doi.org/10.1007/s42452-019-0435-2ArticleCASGoogle Scholar
- Khare, P., & Baruah, B. P. (2010). Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmospheric Research,98, 148–162. https://doi.org/10.1016/j.atmosres.2010.07.001ArticleCASGoogle Scholar
- Kim, K.-H., Kabir, E., & Jahan, S. A. (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences,67, 23–35. https://doi.org/10.1016/j.jes.2017.08.027ArticleCASGoogle Scholar
- Kodzius, R., Khdr, D., Rabiei, N., Fattah, A., Wang, X., Liu, J., Gong, X., & Damiati, S. (2018). The pollutant particle size and chemistry matters. Preprints. https://doi.org/10.20944/preprints201805.0004.v1ArticleGoogle Scholar
- Kumar, A., & Attri, A. K. (2016). Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region. Atmospheric Environment,142, 182–193. https://doi.org/10.1016/j.atmosenv.2016.07.049ArticleCASGoogle Scholar
- Kumar, S., & Dwivedi, S. K. (2021). Impact on particulate matters in India’s most polluted cities due to long-term restriction on anthropogenic activities. Environmental Research. https://doi.org/10.1016/j.envres.2021.111754ArticleGoogle Scholar
- Kumar, V., & Silori, R. (2020). Effect of vehicular pollution in the fastest developing cities of India: A critical review. Advances in Air Pollution Profiling and Control. https://doi.org/10.1007/978-981-15-0954-4_11ArticleGoogle Scholar
- Kumi, F., Badji, A., Mwila, N., Odong, T., Ochwo-Ssemakula, M., Tusiime, G., et al. (2019). New sources of sorghum resistant genotypes to downy mildew disease in Uganda. Biodiversitas Journal of Biological Diversity. https://doi.org/10.13057/biodiv/d201136ArticleGoogle Scholar
- Labrada-Delgado, G., Aragon-Pina, A., Campos-Ramos, A., Castro-Romero, T., Amador-Munoz, O., & Villalobos-Pietrin, R. (2012). Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmospheric Pollution Research,3, 289–300. https://doi.org/10.5094/APR.2012.032ArticleCASGoogle Scholar
- Lang-Yona, N., Dannemiller, K., Yamamoto, N., Burshtein, N., Peccia, J., Yarden, O., & Rudich, Y. (2012). Annual distribution of allergenic fungal spores in atmospheric particulate matter in the eastern mediterranean; A comparative study between ergosterol and quantitative PCR analysis. Atmospheric Chemistry and Physics,12, 2681–2690. https://doi.org/10.5194/acp-12-2681-2012ArticleCASGoogle Scholar
- Lawler, M. J., Draper, D. C., & Smith, J. N. (2020). Atmospheric fungal nanoparticle bursts. Science Advances. https://doi.org/10.1126/sciadv.aax9051ArticleGoogle Scholar
- Lawrence, A. J., & Khan, T. (2020). Quantification of airborne particulate and associated toxic heavy metals in urban indoor environment and allied health effects. Measurement, Analysis and Remediation of Environmental Pollutants. https://doi.org/10.1007/978-981-15-0540-9_2ArticleGoogle Scholar
- Li, Y., Fu, H., Wang, W., Liu, J., Meng, Q., & Wang, W. (2015). Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi’an, China. Atmospheric Environment,122, 439–447. https://doi.org/10.1016/j.atmosenv.2015.09.070ArticleCASGoogle Scholar
- Li, Y., Lu, R., Li, W., Xie, Z., & Song, Y. (2017). Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. Journal of Aerosol Science,106, 83–92. https://doi.org/10.1016/j.jaerosci.2017.01.007ArticleCASGoogle Scholar
- Linillos-Pradillo, B., Rancan, L., Ramiro, E. D., Vara, E., Artíñano, B., & Arias, J. (2021). Determination of SARS-CoV-2 RNA in different particulate matter size fractions of outdoor air samples in Madrid during the lockdown. Environmental Research,195, 110863. https://doi.org/10.1016/j.envres.2021.110863ArticleCASGoogle Scholar
- Liu, L., Liu, Y., Wen, W., Liang, L., Ma, X., Jiao, J., & Guo, K. (2020). Source identification of trace elements in PM2.5 at a rural site in the North China Plain. Atmosphere,11(2), 179. https://doi.org/10.3390/atmos11020179ArticleCASGoogle Scholar
- Loxham, M., & Nieuwenhuijsen, M. J. (2019). Health effects of particulate matter air pollution in underground railway systems–a critical review of the evidence. Particle and Fibre Toxicology,16(1), 1–24. https://doi.org/10.1186/s12989-019-0296-2ArticleGoogle Scholar
- Luo, X., Bing, H., Luo, Z., Wang, Y., & Jin, L. (2019). Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113138ArticleGoogle Scholar
- Madhwal, S., Prabhu, V., Sundriyal, S., & Shridhar, V. (2020). Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environmental Monitoring and Assessment,192(3), 1–15. https://doi.org/10.1007/s10661-020-8158-9ArticleCASGoogle Scholar
- Madsen, A. M., Frederiksen, M. W., Jacobsen, M. H., & Tendal, K. (2020). Towards a risk evaluation of workers’ exposure to handborne and airborne microbial species as exemplified with waste collection workers. Environmental Research. https://doi.org/10.1016/j.envres.2020.109177ArticleGoogle Scholar
- Mandal, R., & Kaur, S. (2020). Health concerns on provisional tolerable weekly intake of aluminium in children and adults from vegetables in Mandi-Gobindgarh (India). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00534-1ArticleGoogle Scholar
- Manjunatha, C., Gogoi, R., Singh, B., et al. (2019). Phenotypic and physiological characterization of maize inbred lines resistant and susceptible to maydis leaf blight. Indian Phytopathology,72, 217–224. https://doi.org/10.1007/s42360-019-00117-wArticleGoogle Scholar
- Mehadi, A., Moosmüller, H., Campbell, D. E., Ham, W., Schweizer, D., Tarnay, L., & Hunter, J. (2020). Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. Journal of the Air and Waste Management Association,70(2), 158–179. https://doi.org/10.1080/10962247.2019.1654036ArticleCASGoogle Scholar
- Michikawa, T., Yamazaki, S., Ueda, K., Yoshino, A., Sugata, S., Saito, S., & Takami, A. (2021). Effects of exposure to chemical components of fine particulate matter on mortality in Tokyo: A case-crossover study. Science of the Total Environment,755, 142489. ArticleCASGoogle Scholar
- Miller, B. G. (2011). The effect of coal usage on human health and the environment. Clean Coal Engineering Technology. https://doi.org/10.1016/b978-1-85617-710-8.00004-2ArticleGoogle Scholar
- Mishra, S. K., Khosla, D., Arora, M., Sharma, C., Prasad, M. V. S. N., Aggarwal, S. G., Gupta, B., Radhakrishnan, S. R., Guleria, R., & Kotnala, R. K. (2016). SEM-EDS and FTIR characterization of aerosols during diwali and post diwali festival over Delhi: Implications to human health. Journal of Environmental Nanotechnology. https://doi.org/10.13074/jent.2016.12.164212ArticleGoogle Scholar
- Mitra, A., Chatterjee, S., Voronina, A. V., Walther, C., & Gupta, D. K. (2020). Lead toxicity in plants: A review. In D. Gupta, S. Chatterjee, & C. Walther (Eds.), Lead in plants and the environment. Radionuclides and heavy metals in the environment. Springer. https://doi.org/10.1007/978-3-030-21638-2_6ChapterGoogle Scholar
- Mogo, S., Cachorro, V. E., & de Frutos, A. M. (2005). Morphological, chemical and optical absorbing characterization of aerosols in the urban atmosphere of Valladolid. Atmospheric Chemistry and Physics,5, 2739–2748. ArticleCASGoogle Scholar
- Mohammadi-Moghadam, F., Heidari, M., Farhadkhani, M., Sadeghi, M., Forouzandeh, S., Ahmadi, A., & Khabaz-Ghasemi, E. (2020). TSP, PM10, PM2.5, and PM1 in ambient air of Shahr-e Kord, Iran’s rooftop; levels, characterisation and health risk assessment of particles-bound heavy metals. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1796992ArticleGoogle Scholar
- Morakinyo, O. M., Mokgobu, M. I., Mukhola, M. S., & Hunter, R. P. (2016). Health outcomes of exposure to biological and chemical components of inhalable and respirable particulate matter. International Journal of Environmental Research and Public Health,13(6), 592. https://doi.org/10.3390/ijerph13060592ArticleCASGoogle Scholar
- Murari, V., Kumar, M., Singh, N., & Singh, R. S. (2016). Particulate morphology and elemental characteristics: Variability at middle Indo-Gangetic Plain. Journal of Atmospheric Chemistry,73, 165–179. https://doi.org/10.1007/s10874-015-9321-5ArticleCASGoogle Scholar
- Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters,8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8ArticleCASGoogle Scholar
- Nasir, Z. A., Mula, V., Stokoe, J., Colbeck, I., & Loeffler, M. (2015). Evaluation of total concentration and size distribution of bacterial and fungal aerosol in healthcare built environments. Indoor and Built Environment,24, 269–279. https://doi.org/10.1177/1420326X13510925ArticleGoogle Scholar
- Nayar, T. S., & Jothish, P. S. (2013). An assessment of the air quality in indoor and outdoor air with reference to fungal spores and pollen grains in four working environments in Kerala, India. Aerobiologia.,29(1), 131–152. https://doi.org/10.1007/s10453-012-9269-8ArticleGoogle Scholar
- Niazi, S., Hassanvand, M. S., Mahvi, A. H., Nabizadeh, R., Alimohammadi, M., Nabavi, S., Faridi, S., Dehghani, A., Hoseini, M., Moradi-Joo, M., Mokamel, A., Kashani, H., Yarali, N., & Yunesian, M. (2015). Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environmental Science and Pollution Research International,22, 16014–16021. https://doi.org/10.1007/s11356-015-4793-zArticleCASGoogle Scholar
- Nihalani, S. A., Khambete, A. K., & Jariwala, N. D. (2020). Review of source apportionment of particulate matter for Indian scenario. Emerging Trends in Civil Engineering. https://doi.org/10.1007/978-981-15-1404-3_18ArticleGoogle Scholar
- Nucci, M., & Anaissie, E. J. (2009). Hyalohyphomycosis. Clinical Mycology. https://doi.org/10.1016/b978-1-4160-5680-5.00013-xArticleGoogle Scholar
- Odebode, A., Adekunle, A., Stajich, J., & Adeonipekun, P. (2020). Airborne fungi spores distribution in various locations in Lagos, Nigeria. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-8038-3ArticleGoogle Scholar
- Ovaskainen, O., Abrego, N., Somervuo, P., Palorinne, I., Hardwick, B., Pitkanen, J. M., et al. (2020). Monitoring fungal communities with the global spore sampling project. Frontiers in Ecology and Evolution,2, 110. Google Scholar
- Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., & Kumari, K. M. (2013). SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol and Air Quality Research,13, 523–536. https://doi.org/10.4209/aaqr.2012.04.0095ArticleCASGoogle Scholar
- Panda, S., & Nagendra, S. M. S. (2018). Chemical and morphological characterization of respirable suspended particulate matter (PM10) and associated heath risk at a critically polluted industrial cluster. Atmospheric Pollution Research,9, 791–803. https://doi.org/10.1016/j.apr.2018.01.011ArticleCASGoogle Scholar
- Pandit, T., & Singh, A. B. (1992). Survey of air borne fungi in a sugar factory. Indian Journal of Aerobiology,2, 154–161. Google Scholar
- Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., & Harrison, R. M. (2015). Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and Inference of Sources. Atmospheric Environment.,S1352–2310, 00203–00204. https://doi.org/10.1016/j.atmosenv.2015.02.074ArticleCASGoogle Scholar
- Park, S. Y., Byun, E. J., Lee, J. D., Kim, S., & Kim, H. S. (2018). Air pollution, autophagy, and skin aging: Impact of particulate matter (PM10) on human dermal fibroblasts. International Journal of Molecular Sciences.,19(9), 2727. https://doi.org/10.3390/ijms19092727ArticleCASGoogle Scholar
- Pathak, P., Srivastava, R. R., Keceli, G., & Mishra, S. (2020). Assessment of the alkaline earth metals (Ca, Sr, Ba) and their associated health impacts. In P. Pathak & D. Gupta (Eds.), Strontium contamination in the environment. The handbook of environmental chemistry. Springer. https://doi.org/10.1007/978-3-030-15314-4_12ChapterGoogle Scholar
- Pavan, R., & Manjunath, K. (2014). Qualitative analysis of indoor and outdoor airborne fungi in cowshed. Journal of Mycology. https://doi.org/10.1155/2014/985921ArticleGoogle Scholar
- Perrine-Walker, F. & Anderson, M. (2019). Colletotrichum graminicola-Pathogen of the Month April 2019.
- Perrone, M. G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., Longhin, E., et al. (2013). Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environmental Pollution,176, 215–227. https://doi.org/10.1016/j.envpol.2013.01.012ArticleCASGoogle Scholar
- Pipal, A. S., Jan, R., Satsangi, P. G., Tiwari, S., & Taneja, A. (2014). Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra. India,14, 1685–1700. https://doi.org/10.4209/aaqr.2014.01.0017ArticleCASGoogle Scholar
- Pipal, A. S., Kulshrestha, A., & Taneja, A. (2011). Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmospheric Environment,45, 3621–3630. https://doi.org/10.1016/j.atmosenv.2011.03.062ArticleCASGoogle Scholar
- Police, S., Sahu, S. K., & Pandit, G. G. (2016). Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmospheric Pollution Research,7, 725–733. https://doi.org/10.1016/j.apr.2016.03.007ArticleGoogle Scholar
- Polymenakou, P. N., Mandalakis, M., Macheras, M., Oulas, A., Kristoffersen, J. B., Christakis, C. A., Terzoglou, V., & Stavroulaki, M. (2020). High genetic diversity and variability of microbial communities in near-surface atmosphere of Crete Island, Greece. Aerobiologia. https://doi.org/10.1007/s10453-020-09636-wArticleGoogle Scholar
- Prabhu, V., Shridhar, V., & Choudhary, A. (2019). Investigation of the source, morphology, and trace elements associated with atmospheric PM10 and human health risks due to inhalation of carcinogenic elements at Dehradun, an Indo-Himalayan city. SN Applied Sciences,1(5), 429. https://doi.org/10.1007/s42452-019-0460-1ArticleCASGoogle Scholar
- Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome,3(1), 78. https://doi.org/10.1186/s40168-015-0144-zArticleGoogle Scholar
- Pu, X., Wang, L., Chen, L., Pan, J., Tang, L., Wen, J., & Qiu, H. (2021). Differential effects of size-specific particulate matter on lower respiratory infections in children: A multi-city time-series analysis in Sichuan, China. Environmental Research,193, 110581. https://doi.org/10.1016/j.envres.2020.110581ArticleCASGoogle Scholar
- Pyrri, I., Zoma, A., Barmparesos, N., Assimakopoulos, M. N., Assimakopoulos, V. D., & Kapsanaki-Gotsi, E. (2020). Impact of a green roof system on indoor fungal aerosol in a primary school in Greece. Science of the Total Environment,719, 137447. https://doi.org/10.1016/j.scitotenv.2020.137447ArticleCASGoogle Scholar
- Qi, Y., Li, Y., Xie, W., Lu, R., Mu, F., Bai, W., & Du, S. (2020). Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Science of the Total Environment,708(15), 135027. https://doi.org/10.1016/j.scitotenv.2019.135027ArticleCASGoogle Scholar
- Raghav, N., Shrivastava, J. N., Satsangi, G. P., & Kumar, R. (2020). Enumeration and characterization of airborne microbial communities in an outdoor environment of the city of Taj, India. Urban Climate,32, 100596. https://doi.org/10.1016/j.uclim.2020.100596ArticleGoogle Scholar
- Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-7528-7ArticleGoogle Scholar
- Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International,125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067ArticleCASGoogle Scholar
- Rai, R., Agrawal, M., & Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system. Plant Responses to Xenobiotics. https://doi.org/10.1007/978-981-10-2860-1_6ArticleGoogle Scholar
- Ramírez, O., Sánchez de la Campa, A. M., Sánchez-Rodas, D., & de la Rosa, J. D. (2020). Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Science of the Total Environment,710, 136344. https://doi.org/10.1016/j.scitotenv.2019.136344ArticleCASGoogle Scholar
- Ramli, N. A., Yusof, N. F. F. M., Shith, S., & Suroto, A. (2020). Chemical and biological compositions associated with ambient respirable particulate matter: A review. Water, Air, & Soil Pollution,231(3), 1–14. https://doi.org/10.1007/s11270-020-04490-5ArticleCASGoogle Scholar
- Ran, J., Yang, A., Sun, S., Han, L., Li, J., Guo, F., Zhao, S., Yang, Y., Mason, T. G., Chan, K.-P., Lee, R.S.-Y., Qiu, H., & Tian, L. (2020). Long-term exposure to ambient fine particulate matter and mortality from renal failure: A retrospective cohort study in Hong Kong. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwz282ArticleGoogle Scholar
- Rashad, Y. M., & Moussa, T. A. (2020). Biocontrol agents for fungal plant diseases management. Cottage Industry of Biocontrol Agents and Their Applications. https://doi.org/10.1007/978-3-030-33161-0_11ArticleGoogle Scholar
- Rick, E. M., Woolnough, K., Pashley, C. H., & Wardlaw, A. J. (2016). Allergic fungal airway disease. Journal of Investigational Allergology and Clinical Immunology,26(6), 344–354. https://doi.org/10.18176/jiaci.0122ArticleCASGoogle Scholar
- Sarkar, S., Khillare, P. S., Jyethi, D. S., Hasan, A., & Parween, M. (2010). Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials,184, 321–330. https://doi.org/10.1016/j.jhazmat.2010.08.039ArticleCASGoogle Scholar
- Satapathy, S. C., Bhateja, V., Mohanty, J. R., & Udgata, S. K. (2020). Smart intelligent computing and applications. Smart Innovation, Systems and Technologies. https://doi.org/10.1007/978-981-13-9282-5ArticleGoogle Scholar
- Satsangi, P. G., & Yadav, S. (2014). Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: Its relation with different pollution sources. International Journal of Environmental Science and Technology,11, 217–232. https://doi.org/10.1007/s13762-012-0173-0ArticleCASGoogle Scholar
- Schnippenkoetter, W., Lo, C., Liu, G., Dibley, K., Chan, W. L., White, J., et al. (2017). The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnology Journal,15(11), 1387–1396. https://doi.org/10.1111/pbi.12723ArticleCASGoogle Scholar
- Shah, A. N., Tanveer, M., Hussain, S., & Yang, G. (2016). Beryllium in the environment: Whether fatal for plant growth? Reviews in Environmental Science and Bio/technology,15(4), 549–561. https://doi.org/10.1007/s11157-016-9412-zArticleCASGoogle Scholar
- Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., et al. (2015). Heavy metal stress and crop productivity. Crop Production and Global Environmental Issues. https://doi.org/10.1007/978-3-319-23162-4_1ArticleGoogle Scholar
- Shahid, M., Natasha, D. C., Niazi, N. K., Xiong, T. T., Farooq, A. B. U., & Khalid, S. (2019). Ecotoxicology of heavy metal(loid)-enriched particulate matter: foliar accumulation by plants and health impacts. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/398_2019_38ArticleGoogle Scholar
- Shalini, V., Narasimhulu, K., Reddy, K. R. O., Balakrishnaiah, G., Gopal, K. R., Reddy, T. L., & Reddy, R. R. (2020). Chemical characterization and source identification of particulate matter at Ballari (15.15° N, 76.93° E), Karnataka over Southern Indian region. Journal of Atmospheric and Solar-Terrestrial Physics,200, 105192. https://doi.org/10.1016/j.jastp.2020.105192ArticleCASGoogle Scholar
- Shammi, S. A., Salam, A., & Khan, M. A. H. (2021). Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka, Bangladesh. Environmental Monitoring and Assessment,193(2), 1–12. ArticleGoogle Scholar
- Sharma, D., Dutta, B. K., & Singh, A. B. (2010). Exposure to indoor fungi in different working environments: A comparative study. Aerobiologia,26, 327–337. https://doi.org/10.1007/s10453-010-9168-9ArticleGoogle Scholar
- Sharma, S. G., & Srinivas, M. S. N. (2009). Study of chemical composition and morphology of airborne particles in Chandigarh, India. Using EDXRF and SEM Techniques,150, 417–425. https://doi.org/10.1007/s10661-008-0240-7ArticleCASGoogle Scholar
- Sharma, S. K., & Mandal, T. K. (2017). Chemical composition of fine mode particulate matter (PM 2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate,21, 106–122. https://doi.org/10.1016/j.uclim.2017.05.009ArticleGoogle Scholar
- Shen, F., Zheng, Y., Niu, M., Zhou, F., Wu, Y., Wang, J., Zhu, T., Wu, Y., We, Z., Hu, M., & Zhu, T. (2019). Characteristics of biological particulate matters at urban and rural sites in the North China Plain. Environmental Pollution,253, 569–577. https://doi.org/10.1016/j.envpol.2019.07.033ArticleCASGoogle Scholar
- Singh, A. B., & Mathur, C. (2021). Fungal aerobiology and Allergies in India: An overview. In T. Satyanarayana, S. K. Deshmukh, & M. V. Deshpande (Eds.), Progress in mycology. Springer. https://doi.org/10.1007/978-981-16-2350-9_14ChapterGoogle Scholar
- Singh, N., Murari, V., Kumar, M., Barman, S. C., & Banerjee, T. (2017). Fine particulates over South Asia: Review and meta-analysis of PM2. 5 source apportionment through receptor model. Environmental Pollution,223, 121–136. https://doi.org/10.1016/j.envpol.2016.12.071ArticleCASGoogle Scholar
- Singh, R., Kumar, S., Singh, M., Garg, R., Natu, S. M., Singh, K. P., & Kushwaha, R. A. S. (2013). Assessment of fungal contamination present on RSPM/PM10 and its association with human health. Biomedical Research,24, 476–478. Google Scholar
- Sivagnanasundaram, P., Amarasekara, R. W. K., Madegedara, R. M. D., Ekanayake, A., & Magana-Arachchi, D. N. (2019). Assessment of airborne bacterial and fungal communities in selected areas of teaching hospital, Kandy, Sri Lanka. BioMed Research International. https://doi.org/10.1155/2019/7393926ArticleGoogle Scholar
- Slezakova, K., Pires, J. C. M., Pereira, M. C., Martins, F. G., & Alvim-Ferraz, M. C. (2008). Influence of traffic emissions on the composition of atmospheric particles of different sizes-Part 2: SEM EDS characterization. Journal of Atmospheric Chemistry,60, 221–236. https://doi.org/10.1007/s10874-008-9117-yArticleCASGoogle Scholar
- Srivastava, A., Siddiqui, N. A., Koshe, R. K., & Singh, V. K. (2018). Human health effects emanating from airborne heavy metals due to natural and anthropogenic activities: A review. Springer Transactions in Civil and Environmental Engineering. https://doi.org/10.1007/978-981-10-7122-5_29ArticleGoogle Scholar
- Srivastava, A., Singh, M., & Jain, V. K. (2012). Identification and characterization of size-segregated bioaerosols at Jawaharlal Nehru University, New Delhi. Natural Hazards,60, 485–499. https://doi.org/10.1007/s11069-011-0022-3ArticleGoogle Scholar
- Styszko, K., Samek, L., Szramowiat, K., Korzeniewska, A., Kubisty, K., Rakoczy-Lelek, R., et al. (2017). Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Quality, Atmosphere and Health.,10(9), 1123–1137. https://doi.org/10.1007/s11869-017-0499-3ArticleCASGoogle Scholar
- Sun, Y., Xu, S., Zheng, D., Li, J., Tian, H., & Wang, Y. (2018). Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Science of the Total Environment,637–638, 507–516. https://doi.org/10.1016/j.scitotenv.2018.04.203ArticleCASGoogle Scholar
- Suwa, R., Jayachandran, K., Nguyen, N. T., Boulenouar, A., Fujita, K., & Saneoka, H. (2008). Barium toxicity effects in soybean plants. Archives of Environmental Contamination and Toxicology,55(3), 397–403. https://doi.org/10.1007/s00244-008-9132-7ArticleCASGoogle Scholar
- Tasić, M., Đurić-Stanojević, B., Rajšić, S., Mijić, Z., & Novaković, V. (2006). Physico-chemical characterization of PM 10 and PM 25 in the Belgrade Urban Area. Acta Chimica Slovenica,53(3), 401–405. Google Scholar
- Telloli, C., Chicca, M., Leis, M., & Vaccaro, C. (2016). Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy). Journal of Environmental Sciences,46, 229–240. https://doi.org/10.1016/j.jes.2016.02.014ArticleGoogle Scholar
- Telloli, C., Malaguti, A., Mircea, M., Tassinari, R., Vaccaro, C., & Berico, M. (2014). Properties of agricultural aerosol released during wheat harvest threshing, plowing and sowing. Journal of Environmental Sciences,26(9), 1903–1912. https://doi.org/10.1016/j.jes.2014.07.004ArticleGoogle Scholar
- Tian, Y., Harrison, R. M., Feng, Y., Shi, Z., Liang, Y., Li, Y., & Xu, J. (2021). Size− resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components. Environmental Pollution,289, 117932. ArticleCASGoogle Scholar
- Tiew, P. Y., Mac, A. M., Ali, N. A. B. M., Thng, K. X., Goh, K., Lau, K. J. X., & Chotirmall, S. H. (2020). The mycobiome in health and disease: Emerging concepts, methodologies and challenges. Mycopathologia. https://doi.org/10.1007/s11046-019-00413-zArticleGoogle Scholar
- Tiwari, S., Chate, D. M., Srivastava, M. K., Safai, P. D., Srivastava, A. K., Bisht, D. S., & Padmanabhamurty, B. (2012). Statistical evaluation of PM 10 and distribution of PM 1, PM 2.5, and PM 10 in ambient air due to extreme fireworks episodes (Deepawali festivals) in megacity Delhi. Natural Hazards,61(2), 521–531. https://doi.org/10.1007/s11069-011-9931-4ArticleGoogle Scholar
- Tong, D. Q., Wang, J. X., Gill, T. E., Lei, H., & Wang, B. (2017). Intensified dust storm activity and Valley fever infection in the southwestern United States. Geophysical Research Letters, 44(9), 4304–4312. https://doi.org/10.1002/2017GL073524. ArticleGoogle Scholar
- Turap, Y., Talifua, D., Wang, X., Abulizia, A., Maihemutia, M., Tursuna, Y., Dingb, X., Aierkena, T., & Rekefua, S. (2019). Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmospheric Research,218, 257–268. https://doi.org/10.1016/j.atmosres.2018.12.010ArticleCASGoogle Scholar
- Ulrichs, C., Welke, B., Mucha-Pelzer, T., Goswami, A., & Mewis, I. (2008). Effect of solid particulate matter deposits on vegetation–a review. Functional Plant Science and Biotechnology,2(1), 56–62. Google Scholar
- Uranga, J. P., Schierenbeck, M., Perelló, A. E., Lohwasser, U., Börner, A., & Simón, M. R. (2020). Localization of QTL for resistance to Pyrenophora teres f. maculata, a new wheat pathogen. Euphytica,216(4), 1–13. ArticleGoogle Scholar
- USEPA (U.S. Environmental Protection Agency). (2012). Particulate Matter. 2012. Available online: http://www.epa.gov/airquality/particlepollution/.
- USEPA (U.S. Environmental Protection Agency). (2018). Particulate matter (PM) basics. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics.
- USEPA (2014). Risk Assessment for Carcinogenic Effects. U.S. Environmental Protection Agency.https://www.epa.gov/fera/risk/assessment/carcinogeniceffects.
- Viegas, C., Faria, T., Pacífico, C., Santos, M. D., Monteiro, A., Lança, C., Carolino, E., Viegas, S., & Verde, S. C. (2017). Microbiota and particulate matter assessment in Portuguese optical shops providing contact lens services. Healthcare.,5, 24. https://doi.org/10.3390/healthcare5020024ArticleGoogle Scholar
- Wang, J., Wan, Y., Cheng, L., Xia, W., Li, Y., & Xu, S. (2020). Arsenic in outdoor air particulate matter in China: Tiered study and implications for human exposure potential. Atmospheric Pollution Research. https://doi.org/10.1016/j.apr.2020.01.006ArticleGoogle Scholar
- Wei, M., Xu, C., Xu, X., Zhu, C., Li, J., & Lv, G. (2019). Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1. 0) and fine (PM2. 5) particles. Ecotoxicology and Environmental Safety,171, 37–46. https://doi.org/10.1016/j.ecoenv.2018.12.026ArticleCASGoogle Scholar
- WHO (World Health Organization). (2014). http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/. Accessed September 2014.
- WHO (World Health Organization). (2021). https://www.who.int/data/gho/data/themes/air-pollution.
- Wu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., & Cen, K. (2018). Characterization and source apportionment of carbonaceous PM2.5 particles in China-A review. Atmospheric Environment,189, 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025ArticleCASGoogle Scholar
- Wu, Y., Lin, S., Tian, H., Zhang, K., Wang, Y., Sun, B., et al. (2020). A quantitative assessment of atmospheric emissions and spatial distribution of trace elements from natural sources in China. Environmental Pollution,259, 113918. https://doi.org/10.1016/j.envpol.2020.113918ArticleCASGoogle Scholar
- Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., & Yin, L. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research,104–105, 264–272. https://doi.org/10.1016/j.atmosres.2011.10.017ArticleCASGoogle Scholar
- Xue, H., Liu, G., Zhang, H., Hu, R., & Wang, X. (2018). Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.12.123ArticleGoogle Scholar
- Yadav, S., Gettu, N., Swain, B., Kumari, K., Ojha, N., & Gunthe, S. S. (2020). Bioaerosol impact on crop health over India due to emerging fungal diseases (EFDs): An important missing link. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08059-xArticleGoogle Scholar
- Yamamoto, N., Hospodsky, D., Dannemiller, K. C., Nazaroff, W. W., & Peccia, J. (2015). Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environmental Science & Technology,49(8), 5098–5106. ArticleCASGoogle Scholar
- Yan, D., Zhang, T., Su, J., Zhao, L.-L., Wang, H., Fang, X.-M., Zhang, Y.-Q., Liu, H.-Y., & Yu, L.-Y. (2016). Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Frontiers in Microbiology,7, 487. https://doi.org/10.3389/fmicb.2016.00487ArticleGoogle Scholar
- Yarahmadi, M., Hashemi, S. J., Sepahvand, A., Shahsavani, A., Dai Ghazvini, R., Rezaie, S., Ansari, S., Hadei, M., Shoar, M. G., Bakhshi, H., Kamarei, B., & Ahmadikia, K. (2020). Evaluation of phenotypes and genotypes of airborne Fungi during middle eastern dust storms. Journal of Environmental Health Science and Engineering. https://doi.org/10.1007/s40201-019-00428-0ArticleGoogle Scholar
- Yarragunta, Y., Srivastava, S., Mitra, D., & Chandola, H. C. (2020). Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand. GIScience & Remote Sensing. https://doi.org/10.1080/15481603.2020.1712100BookGoogle Scholar
- Ye, W., Liu, T., Zhang, W., Li, S., Zhu, M., Li, H., Kong, Y., & Xu, L. (2019). Disclosure of the molecular mechanism of wheat leaf spot disease caused by bipolaris sorokiniana through comparative transcriptome and metabolomics analysis. International Journal of Molecular Sciences,20(23), 6090. https://doi.org/10.3390/ijms20236090ArticleCASGoogle Scholar
- Zanhong, W., Lingzhi, Z., Yuliang, Z., Zhou, Z., & Sumin, Z. (2008). Morphology of single inhalable particle in the air polluted city of Shijiazhuang, China. Journal of Environmental Sciences,20, 429–435. https://doi.org/10.1016/S1001-0742(08)62075-6ArticleGoogle Scholar
- Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International,113, 74–90. https://doi.org/10.1016/j.envint.2018.01.007ArticleGoogle Scholar
- Zhang, B., Jiao, L., Xu, G., Zhao, S., Tang, X., Zhou, Y., & Gong, C. (2018). Influences of wind and precipitation on different-sized particulate matter concentrations (PM 2.5, PM 10, PM 2.5-10). Meteorology and Atmospheric Physics,130(3), 383–392. ArticleGoogle Scholar
- Zhang, Y., Wu, D., Kong, Q., Li, A., Li, Y., Geng, S., Dong, X., Liu, Y., & Chen, P. (2020). Exposure level and distribution of airborne bacteria and fungi in an urban utility tunnel: A case study. Tunnelling and Underground Space Technology. https://doi.org/10.1016/j.tust.2019.103215ArticleGoogle Scholar
- Zhong, X., Qi, J., Li, H., Dong, L., & Gao, D. (2016). Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmospheric Environment,140, 506–513. https://doi.org/10.1016/j.atmosenv.2016.06.034ArticleCASGoogle Scholar
- Zhou, X. G., Tabien, R. E., & Way, M. O. (2010). First report of white leaf streak of rice caused by Mycovellosiella oryzae in Texas. Plant Disease,94(5), 639. https://doi.org/10.1094/PDIS-94-5-0639BArticleCASGoogle Scholar
- Zoran, M. A., Savastru, R. S., Savastru, D. M., & Tautan, M. N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Science of The Total Environment,738, 139825. https://doi.org/10.1016/j.scitotenv.2020.139825ArticleCASGoogle Scholar
Acknowledgements
One of us (Suresh Kumar) is grateful to University Grant Commission (UGC), New Delhi, Government of India, for providing fellowship.
Author information
Authors and Affiliations
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, India Suresh Kumar & Shiv Kumar Dwivedi
- Suresh Kumar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Contributions
S.K. contributed to conceptualization, methodology, formal analysis, investigation, resources, data curation and writing—original draft. S.K.D. performed writing—review and editing, and supervision.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Consent to participate
This manuscript does not contain any studies with human participants performed by any of the authors.
Consent to publish
This article has the consent of all the authors and authors have no conflicts of interest.
Ethical approval
This manuscript does not contain any studies with animals performed by any of the authors.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary file1 (DOCX 989 kb)
Rights and permissions
About this article
Cite this article
Kumar, S., Dwivedi, S.K. Chemical and biological components of atmospheric particulate matter and their impacts on human health and crops: a review. Aerobiologia 38, 287–327 (2022). https://doi.org/10.1007/s10453-022-09749-4
- Received : 09 December 2021
- Accepted : 06 June 2022
- Published : 24 June 2022
- Issue Date : September 2022
- DOI : https://doi.org/10.1007/s10453-022-09749-4
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- Particulate matters
- Morphology
- Chemical pollutants
- Biological properties
- Aeromycoflora
- Impacts on human and crops